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ABSTRACT

~This paper describes the design, construction, and
evaluation of a microprocessor-based. cost —constrained word
recognition system. The system 'utiiizé§( seven Eandpass
filters, logarithmically spaced, followed by envelope
detectors. The final algorithm uses eight uniformly spaced
time slices, and used dynamic programming for time warping,
with a weighted Tchebycheff distance. This system resulted
in 98% correct recognition for the ten digits, 9 - 9, of the
training group, and 96% correct recognition for the control
group.

The project demonstrated the necessity for an
improvement gained with time warping. Rabiner's
Unconstrained Endpoint Local Minima algorithm was used to
perform the time warping. For the system used, it was found
that a weighted Tchebycheff distance measure performed
better than the Euclidean distance measure. The parameters
were weighted inversely proportional to their variances. The
results, however, were found to be relatively insensitive to
the weighting coefficients.

The additional hardware required for a typical
microprocessor system, costs under $150. The ability to
build the hardware for such a low cost was due to the use of

Reticon's Universal Active Filter R5620, which costs under

$7.00 each. .,
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1.0 INTRODUCTION

The purpose of this project was to design and implement
a speech recognition system for a limited vocabulary of
isolated words. The goal was to produce a system that could
do discrete word recognition on a microprocessor based
system. With the present day proliferation of microprocessor
systems, there are a wide variety of applications in which
word recognition could be useful if the cost was low enough.
These applications include numerical data entry and as a
non-tactile input method for the physically handicapped.

There have been many attempts to build systems to do
discrete word recognition. The most common present day
systems use linear predictive coefficients and do all of
their processing on a sampled version of the original voice
waveform. This leads to very 1little additional external
equipment to be added to the computer system, however, doing
all the processing after sampling requires a large amount of
computing power and is not practical for most microprocessor
systems.

Since many other researchers have worked on the problem
of limited vocabulary discrete word recognition, and

obtained very good results, why try another approach? The

goal of this project was to obtain a low cost recognition

system that could be added to a typical microprocessor

LR P P

system. In addition to being low cost, it was desired to

have a system that was easy to implement and did not require
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any sophisticated test equipment to adjust. Due to these
constraints it was necessary to limit the amount of post
processing that was required. For this reason the approach
chosen was to use external hardware to do prefiltering

before the signal was sampled.

2.0 HISTORICAL REVIEW
The following table gives some statistics of past

systems designed to do word recognition of the ten digits, O

to 9. [1]
REFERENCE SPEAKERS NUMBER OF CORRKRECT
UTTERANCES

Martin, Grunza 10 2400 99.7
1975

Scott 30 9300 98.0

1975

Coler, et al 20 20000 87.6
1977

Nippon Electric 4 2400 99.8
1978

TABLE 1. PAST PERFORMANCES

"In general, scores of from 99% to as high as 99.9% correct
recognition are possible in ideal laboratory conditions of
no noise, adequate talker training, and consistent talking
habits. However, actual field tests with ultimate wusers

rarely come close to such high figures, and 97% is a high
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(and barely adequate) accuracy level for most field i
conditions.”" [1] This project was not trying to improve the

recognition rates that other researchers have obtained. The

goal was to try to obtain similar results using

. a microprocessor based system with some 1low cost external
;T hardware.

E 3.0 TECHNICAL DISCUSSION

:: Many distinguished researchers have proposed some, now

classic, techniques for specific facets of pattern

! recognition. This project combined several of these classic |
~ techniques to obtain a word recognition procedure. Table 2 ;
3 shows the major techniques tried for different levels of 3
- processing. 1
~
N SAMPLING WARPING DISTANCE CLASSIFICATION
UNIFORM DYNAMIC TCHEBYCHEFF K NEAREST
SAMPLING PROGRAMMING DISTANCE - NEIGHBOR
WITH
NON-UNIFORM THRESHOLDING EUCLIDEAN FISHER
SAMPLING DISTANCE DISCRIMINANT
STANDARD
DEVIATION
WEIGHTING

TABLE 2. TECHNIQUES USED

;- Different combinations of these techniques, one from each
column, rere v~ 1 in an attempt to obtain an optimum word

recogniti .. system. The following sections contain a




discussion of what word recognition is, an overview of the
structure of the English language, and a brief summary of
some of the major pattern recognition techniques employed in

this project.

3.1.1 TYPES OF RECOGNITION

Systems that are using isolated words, words separated
from other words by a period of silence, can be asked to
perform one of three different types of speech recognition,
WORD recognition, SPEAKER recognition, and WORD-SPEAKER
recognition. If the system is responding to more than one
speaker, the templates to be matched can be arranged in a
matrix of i different words said by the j different

speakers.

WORD
W W W e W
11 12 13 1i
W W W ... W
21 22 23 2i
W W W W
31 32 33 3i
SPEAKER
W ) W ... W
jl 32 33 ji

FIGURE 1. MATRIX REPRESENTATION

If the match results in a selection of the column number 1

~ e
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through i, without regard to row, the routine is doing WORD .
recognition. In word recognition, the speaker who said the
word is of no importance. For this reason, the matrix is

treated as 1if the different rows are simply representing

-

multiple utterances of the words spoken by the same speaker.

If the answer from the routine is the row number 1 through

j, the application is SPEAKER identification. In speaker

identification or recognition, the word spoken 1is not !
important. In this case the matrix is treated as 1if the S
columns are simply multiple samples of the speakers voice. ;
If the answer required is not only the word spoken, but also ;
the speaker who said it, the answer must be both the row and
column, and the application is WORD-SPEAKER recognition. As i
is quite apparent from the matrix representation, !
word-speaker recognition is the most difficult to
accomplish, since it entails both of the other types of N
recognition. !
3.1.2 PHONEMES .
|

English can be described as a set of approximately 42
sounds called phonemes. These sounds can be further broken
down into vowels, diphthongs, semivowels, and consonants.

Each of the phonemes can be classified as either continuant

Al 5 3 SAFCIPOI I P e

or noncontinuant. Continuant sounds are those sounds that

are produced by a fixed configuration of the vocal tracet.

(2]

iareur ,z et B A e A s )
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CONTINUANT NONCONT INUANT
Vowels Diphthongs
1Y bEEt Al bUY
I blt oI o10)'4
E bEt AU how
AE bAt EI bAY
A hot ouU bOAt
ER bIRd Ju you
UH bUt
OwW bOUght Semivowels
00 bOOt W Wit
U - fOoOot L Let
o] bOAtL R Rent
Y You
Nasals
M Met Stops
N Net B Bet
NG siNG D Debt
G Get
Fricatives P Pet
voiced T Ten
v Vat K Kit
TH THing
2 200 Whisper
ZH aZure H Hat
unvoiced Affricates
F Fat DZH Judge
THE THe TSH CHurch
S Sat
SH SHut

TABLE 3. PHONEMES

The approach for this  project was to concentrate on the

> continuant phonemes. Continuant sounds are based on a fixed

configuration of the vocal tract. Since the configuration of

jﬁ the vocal tract acts as a filter, a constant configuration

- will result in constant ratios of spectral components. 4
1

Recognition 1is performed by obtaining the spectral energies
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during these continuant phonemes, and matching these to the
reference words with the same pattern of continuant
phonemes. Even though noncontinuant phonemes are based on
transitioning of the vocal tract, part of the phoneme will
be based on a fixed vocal tract configuration. The proposed
approach will therefore attempt to match all stationary
sounds. The result is an attempt to match continuant
phonemes and the stationary portions of noncontinuant

phonemes.

3.1.3 DISTANCE MEASURES

The distance measure is a key element in the pattern
matching algorithm. This system uses eight different
features for pattern matching. A very important question is
the weighted importance of each of the parameters. The
averages and variances of these parameters must be estimated
in order to calculate the required weighting of each of the
parameters. The distance measures selected are that of a
weighted Euclidean distance and a weighted Tchebycheff
distance. The Euclidean distance measure is the proper
measure to be used when the noise associated with the sample
data is white and has a Gaussian distribution. The Euclidean
distance measure is the proper distance measure to use with
additive white noise, because the Euclidean distance
measure, which is a square law detector, finds the

intersection of the probability density functions when the
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functions have equal variances, equal a priori

probabilities, and Gaussian distributions. The purpose of

aend.

the weighting is to normalize the different variances of the
parameters. This procedure of weighting the parameters by

the reciprocal of their variances is discussed by Duda and

Mo ¥ -

Hart. [3] This technique of weighting measurements inversely
proportional to the variance estimates is a well known i
technique in Kalman Filtering to obtain a better estimate of
a parameter in the presence of noise. To find the weighted
Euclidean distance between two vectors X and Y, the square

root is taken of the sum of the differences of each of the

components, multiplied by the weighting factor for that
component. i

Euclidean = SQRT( (wl*(xl-yl)**2) + (w2*(x2-y2)}**2) + ... )
Distance

To find the weighted Tchebycheff distance between two

vectors X and Y, the sum is formed of the absolute value of
the difference of the individual components multiplied by
the weighting factor for that component.

Tchebycheff = wl*(|{x1l-yl}) + w2*(|x2-y2|) +
Distance

These two distance measures are quite similar but the

difference is that the Euclidean distance is a square law

measure while the Tchebycheff distance 1is a first order

[P o PP

measure. The Euclidean distance measure will perform better
under conditions of white Gaussian noise. However, the

Tchebycheff distance measure is often chosen, because most

s B e o aa

atalals




microprocessors do not have a built in instruction to

perform multiplication.

3.1.4 DYNAMIC PROGRAMING

Due to the inherent time variability of spoken words,
it is necessary to use some form of warping in order to
obtain a good match between two different utterances of the
same word. Warping is the non-linear stretching or
compressing of the word in order to obtain an optimal match
with the reference template. Dynamic programming is normally
used to perform this warping. There are many slightly
different forms of dynamic programming, depending on the
constraints placed on the problem.

The most naive approach is to treat each sequence as a
uniform spring. In this method the end points are exactly
matched by uniformly compressing or expanding the sequence.
There are two main problems in trying to use this approach
with this speech recognition algorithm. First, if the
approach matches endpoints exactly, one must assume that the
endpoints are the true endpoints. Isolated words normally
have fairly well defined endpoints, but if the word starts
or ends with a weak phoneme such as a fricative, the exact
endpoint will not be well defined. Second, this method of
uniform stretching, by definition, assumes that the increase

or decrease in the number of points occurs uniformly across

the sequence. In the Non~uniform algorithm, the points are
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obtained non-uniformly from the detection of constant
portions of the filtered envelopes, and this assumption is
not valid. A small amount of noise during a portion of the
word can cause points to be added or deleted from one
portion of the sequence, while the remaining portions of the
sequence are unaffected. This assumption of uniform
stretching is not valid for the Uniform Algorithm either. In
the Uniform algorithm, points are obtained at uniform time
increments. A person 1is much more 1likely to draw out
continuant - phonemes, so again it 1is possible to add
additional samples in part of the word without effecting the
rest of the samples.

The dynamic programming method used to perform the
warping for this project is a modification of Rabiner's
Unconstrained Endpoint Local Minima (UELM) routine. [4] This
method is a suboptimal form of dynamic programming. Instead
of attempting to minimize the entire path, the UELM method
only does local optimization. The advantage of this type of
optimization is that there are a smaller number of possible
paths to be examined. The reduction in the number of paths
reduces the amount of required calculations, and
consequentially the time that is needed for the routine to
be performed.

In the UELM routine a match is found by finding the
best fit of the next point from plus or minus DELTA points

of the 1last match with the reference. In this modified

10
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procedure a match is 1looked for 1in only the positive
direction. This prevents the match from running backward
through the reference. That is, the match can not go halfway
through the reference template and then progress back to the
beginning of the template 1in case the word happens to be
symmetrical. The value of delta chosen determines how much
authority the dynamic program will have to expand or
compress the reference template. Delta is found
experimentally. No analytic method was found to calculate
the optimum value for delta.

In the Unconstrained Endpoint Local Minima recursive
equation, the index of the first template is used to drive
the algorithm. That is, each point of the driving template
is taken in order. As a result of only one of the templates
driving the algorithm, one should not expect to obtain the
same accumulated distance if the driving and reference
samples are interchanged. The importance of this difference
in distances 1is that 1in order to compare accumulated
distances, the sample template should be the first or
driving template, while the reference template 1is second.
This allows the accumulated distances for different
references to be compared against the same scale.

One of the major constaints placed upon dynamic
programming algorithm is the treatment of endpoints. Some
methods constrain the endpoints of the sample and the

reference templates to match exactly. Most researchers using

.
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dynamic programming for speech recognition agree that this
is not a reasonable constraint for this application. Due to
noise and difficulties 1in exactly 1locating the word
endpoints, the endpoint position tend to vary from the real
endpoints. It is therefore not a reasonable constraint to
force points that can not be exactly determined to exactly
match each other.

If the method used does not constrain endpoints, it
will have to deal with the problem of one of the templates
reaching the end before the other. If the driving template
reaches the end first, most methods terminate and use the
distance accumulated to this point. This method either
regards the remaining portion of the reference as noise, or
considers the reference endpoint to be misplaced. A problem
occurs when the reference template terminates first. In this
case the dynamic program does not run through the entire
sample, the accumulated distance will not be based upon the

correct number of points.

One solution is to continue the method, duplicating the
last reference point as many times as necessary until the
end of the driving template is reached. This project calls
this method, termination with NO INTERPOLATION. A second
method, which generally gives better results, 1is to
terminate when the end of the reference is reached, and to
scale the resulting distance by (total points in

driver/point number of driver at termination). This method

12
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is called termination with INTERPOLATION. In Rabiner's
Unconstrained Endpoint Local Minima (UELM) method the

accumulated distance at point (n) of the driver is: [5]

D (n) =D (n-1,gq) + min D(n,m)
A A

For: g~-delta < m < g+delta

The total accumulated distance is generated by minimizing
the local distance between points but does not guarantee a
global minimum path. ©One important point to note is that
since m is constrained to be within élus or minus delta
points of g, the match can actually run backwards along the
reference. To eliminate this possibility for this project
the constraint was changed to g < m < g+delta. The UELM
algorithm was chosen for this project since it has been

!
shown by Rabiner to give results comparable to other methods

while being the least costly as far as computation time. [4] |
That is, the UELM method which performs only a local j
minimization gives results comparable to a global %
minimization but requires much fewer calculations. ;
3.1.4.1 Thresholds ?

Thresholds can be used in various ways along with the E
dynamic programming. In addition to eliminating bad matches :
and matches that accumulate large errors early, thresholding i
is very important for the decrease in time that occurs in ;

the dynamic programming routine. The simplest form of



i
.

AU St J g IS S AT e PR et S TS S i

thresholding is to have one maximum value that the distance
must be less than in order to be considered a valid match.
This method is very useful to eliminate words that are not
in the vocabulary.

The next type of threshold is based on the heuristic
principle that if a match has a high error value early on,
it will be a good candidate to eliminate. This is based on
the fact that the error function 1is a monotonically
increasing function. This type of threshold uses a graduated
threshold that is lower for early cycles of the dynamic
program and increases as the match proceeds. This type of
thresholding works best when the accumulated error distance
of the desired matches are concave upward, and the undesired
matches are concave downward. That is, the desired matches
have most of the error occur at the end of the word while
the undesired matches have most of the error occur at the
beginning of the word. When using a graduated threshold, it
is quite possible to have two matches that without
thresholding would obtain the same final error value, yet
with thresholding, the sample that accumulated 1its error
earlier would be eliminated. The thresholds must be high
enough not to eliminate the correct match. By proper
selection of thresholds the selection time <c¢an be
significantly reduced. The thresholds were adjusted by
setting them to a value that was twice the accumulated error

distance that occured during the match with the correct
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template. Setting the thresholds this high prevented the
correct template from being eliminated by thresholding. Once
the thresholds were raised high enough to prevent the
elimination of the correct template, the exact vaule of the
threshold was not critical. If there is sufficient time, it
is far better to have the thresholds too high than too low
as this will prevent to possibility of the correct template

from being eliminated by thresholding.

3.1.5 FISHER DISCRIMINANT

The Fisher Linear Discriminate was used on this project
as one type of classifier. This classifier determines the
equation of a hyperplane that separates the two or more
classes of interest. [5] The data sample is then classified
by simply determining on which side of the hyperplane the
sample falls. In order to determine the dividing hyperplane,
the means and the covariance matrices of the classes must be
found. The Fisher Linear Discriminant function is a function

of the form:

wl
w2

T IF > 0 X
H(X) =V X + Vo IF < O X

This function will classify a sample X as belonging to class

wl if H(X)>0 and class w2 if H(X)<0. The vector V and scalar

¢
‘

e e Sy

o .
)

Vo are found by using the Fisher criterion:

M
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2 2 2
£f=(nl - n2) /(0 +0 )
1 2

That is, the 1linear boundary between classes will fall

between the means, ni, of the two classes spaced inversely
2

proportional to the variances, o , of the classes.
i

-1
vV = (.581 +.582) (M1 - M2)

where Si is the covariance matrix for class i and Mi is the

mean of class i.

T 2 2
Vo = (M2 - M1) (.5S81 + .582) (clMZ +-02M1)
.............. R R e Ly
o + 0
1l 2
2
where o is the variance of H(X) for class i and can be
i
calculated from:
2 T
o] =V Si Vv

i
The linear discriminant vector V and scalar Vo are

derived as follows:
2 2

Let f(nl,n2,0 ,0 ) be any criterion function to be maximized.
1 2

Then 2

2
of o O of OO 3f anl 3f an2
P SN e i 4 e oem
¥ .2 v . % v anl 3V an2 v

1 2 2 2
9f € 3"1 3£ 3°2 3f anl  3f 3n2
i S S 4 mm- mme
Vo aVo Vo anl aVo an2 3Vo
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But

T
ni =V Mi + Vo
2 T
g =V SivV
1l
So
2
90 LAV = 2 Si V
1
9 ni/aV = Mi
2
dc/ Vo =0
1

d ni/3vVo =1

Substituting
2 2

2(3f/30 ) S1 + (3f/30 ) S2 ) V = Ml - M2 5f/5n2
1 2
3f/3nl1 + 3£/9n2 = O

Now using the Fisher criterion
2 2
f=(nl -n2) / (o + o)
2 12 2
2((nl - n2)/(c + o )) (.581 +.582) V = M1l - M2
1 2
But the scale factor 2((nl -n2)/( + )) does not change the
slope, so it can be deleted.

-1
V= (.551 + .552) (Ml - M2)

Since
T
H(X) =V X +Vo =0

When
2 2
X =g, M2 +0 Ml

Tz---zjf
o o

And

17
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Then

2 2
(M2 - M1)T (.551 + .5S2) (o, M2 + 0 M1)
VO = m-cemmmr e e Foo=- FgorEem TG
+
") [0]
1 2

The Fisher discriminant as defined above is a two class
problem. In order to generalize it to a multiclass problem,
the Fisher discriminant can be applied to all of the classes
by pairs. In order for X to be labeled as <c¢lass 1i, the

following constraint must be met:

V X+Vo >0 (j=1,2,...M; i<>j)
ij ij

where M is the number of classes. A difficulty that develops
with the linear discriminant for a multiple class problem is
that it 1is possible to have regions in space where no
consistent classification is possible. These regions, called
reject regions, indicate regions where there is no class i
in which the above constraint is met. For this reason linear
discriminant functions tend to perform poorly for large
class problems. In this project the Fisher discriminant is a
fairly small class problem for the number of input
parameters, so it worked quite well. That is, there were
approximately the same number of independent parameters as
there were classes to be separated. This meant that the

Fisher discriminant could form decision boundaries without

creating large reject regions.
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3.1.6 STANDARD DEVIATION WEIGHTING

When using several different parameters for pattern
recognition, some form of normalization is required to take
into account the information content of the different
parameters. Normalization is used to take into account that
a parameter might be far from the mean, but it should not
contribute significantly to the error distance if it has a
very large standard deviation. One method discussed by Duda
and Hart to normalize data is to subtract the mean of the
class and divide by the standard deviation of each
component. This method is related, but distinctly different
from the weighted distance measures previously discussed,

which divide by the variance.

The total distance to the class i is found by taking the

Euclidean distances of the resultant components. The
boundaries between classes will remain a straight line, with
the slope changed because of dividing by the standard
deviation.This weighting will prevent a single component
with a large variance that 1is far from the mean from
dominating the distance. [3] This technique of weighting
measurements inversely proportional to the variance

estimates is a well known technique in Kalman Filtering to

19
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obtain a better estimate of a parameter in the presence of

. noise.

3.1.7 K NEAREST NEIGHBOR

The K Nearest Neighbor rule is often used as a
classification technique when multiple copies of templates
are stored. In this project the K Nearest Neighbor rule is

used to classify a sample after using the Euclidean or

y
4
1
g
j
:}
3
]
K
!

-

j§ Tchebycheff distance measure when finding the error

:i distance. Instead of simply picking the template that has

f: the lowest error distance, the K Nearest Neighbor routine is

;; passed the error distances of all of the templates, and

5 assigns a sample X to class wi if the majority of tha ¥

X nearest matches are class wi. If K is fixed and the number

3 of samples 1is allowed to increase to infinity, than all of

- the K nearest neighbors will converge to ci. The K Nearest ;

s Neighbor rule selects ci if the majority of the K nearest g

ﬁ neighbors are ci, with probability: 3

X 3
1

; K K i K-i ;

- (i) P(ci/X) [1-P(ci/x)] N

- i=(K+1)/2 y

% !

3 This rule is an attempt to estimate the a posteriori }

5 probability P(ci/X). One would like to use a large value for S

f K in order to obtain an accurate estimate. A contradictory

PR . SN

requirement is that all of the K matches be <close to one

20
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class. These two contradictory requirements force K to be a

small number compared to the total number of samples. [6]

3.1.8 COMPARISON OF CLASSIFIERS

The K Nearest Neighbor <classifier is a non-linear
classifier while the Standard Deviation Weighting and Fisher
Discriminant are 1linear classifiers. This non-linearity of
the K Nearest Neighbor allows more freedom in the placement
of the decision boundary.

The following sample data will be used to show how each
of the <classifiers forms the decision boundary. Figure 2,

shows the data points and the boundaries formed by each

classifier.

CLASS 1 CLASS 2
( 0, 2) (4, 2)
( ol 6) ( 41_2)
(_ll 4) ( 3, O)
(1, 4) (5, 0)

Means of each class are:

M1=(0, 4)

M2=(4,0)

The covariance matrices for each class are:

T

S1 = E (X-M)(X-M)

S1 = (1 0
0 4
76l
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FIGURE 2. COMPARISON OF BOUNDARIES
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The standard deviations of each parameter are:

Ox =1

Oy = 2

The Standard Deviation Weighting method which subtracts the
mean and divides by the standard deviation for that

parameter has the following decision boundary.

Y 2 2 2 2
I /x—O\ [ Y-4 I R=4 y-0
L}::‘ \ 2 7 V1 2
éj which results in the linear decision boundary
X vy =4x - 6
E! The Fisher Discriminant function can be found as follows .
.. -1
5 V= (.581 + .582) (M1 - M2) !
-1 i
vV = (1 o (—4) K
0 4 4 :
vV = (-4) :
1 s
T
2
= S
01 v 1v :
2 .
o = (-4, 1) 10 -4 X
1 (o 4) ( 1) ,
2 |
= 20 !
o% i
= 1
o, 20 ﬁ
T -1, ) |
(M2 - M1) (.581 + .5sS82) (02M1 + olMZ) ]
VO = crmcacccccmmmccreccccmcc e e cnccees oo :
o2 + 2
1 9% |
= (4,-4) (1 O)(BO) j
0 .25/ 180 1
=6 !
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Boundary occurs when
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PR ot
Je

T
VvV X+ Vo =0
2 y = 4x -6 ]
This boundary happens to be equal to the Standard Deviation l

weighting classifier boundary. This occurred because the two

parameters were independent. If they were not independent,
then the off diagonal terms in the covariance matrix S would
not be zero, and the boundaries would have been different.
The K Nearest Neighbor classifier forms a piecewise
linear boundary. For this example K=3, since that was the
value used latter in the final algorithm. The points where
the slope of the resulting boundary change are the locations
where a new sample point becomes closer than the previous

point. The following seven equations represent the decision

boundary.
For (*,~») to (0,-.25)

2 2 2 2
(x+1) + (y-4) = (x-4) + (y+2)

y = 5/6 x - .25
For (0,-.25) to (.5,0)

2 2 2 2
(x-1) + (y-4) = (x-4) + (y+2)

y = .5 x -.25
For (.5,0) to (1.75,1.88)

2 2 2 2
(x-1) + (y-4) = (x-4) + (y-2)

y=1.5x -.75
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For (1.75,1.88) to (2.25,2.13)

2 2 2 2
(x-1) + (y-4) = (x-3) + (y-0)

y =.5x+1
For (2.25,2.13) to (3.5,4)

2 2 2 2
(x-0) + (y-2) = (x-3) + (y-0)

y =1.5 x -1.25
For (3.5,4) to (4,4.25)

2 2 2 2
(x-0) + (y-6) = (x-3) + (y-0O)

y = .5x + 2.25
For (4,4.25) to («,=)

2 2 2 2
(x-0) + (y-6) = (x-5) + (y-0)

Y =5/6 x + 11/12

Figure 2 shows the 3 resulting decision boundaries plotted
with the sample data. The non-linearity of the K Nearest
Neighbor boundary allows more flexibility in the decision
boundary placement. Notice that the Standard Deviation
Weighting and Fisher Discriminant classifiers require
statistics for the data classes to be estimated while the K
Nearest Neighbor does not. Due to the above reasons, the K

Nearest Neighbor classifier was chosen for this project.

3.2 ALGORITHMS
Combining several of the above techniques produced the

Non-Uniform and the Uniform algorithms that were used on

25




this project. The major difference between the two
algorithms is in the determination of when time slices
should be taken.

When trying to find a match between two signals there
are three basic wvariations to which the algorithm should
remain invariant. The first common variation 1is that of
identical signals which differ in amplitude only. With this
amplitude variation one of the signals is simply a larger
version of the other. In speech systems this difference in
amplitude can occur because the word 1is spoken softer or
louder. In order to compensate for the variations in volume
of the spoken word, the pre-~processor in this system
contains an automatic gain controlled amplifier. The AGC
amplifier attempts to maintain a constant amplitude
regardless of how loud or soft the word was spoken.

The second variation that can occur is that of a time
shift. Since this system starts to sample when a set
threshold is exceeded, a slight noise or wvariation in
amplitude can change the point at which the sampling starts.
By performing a convolution with an edge operator, the
points of transition can be found. The convolution is
invariant for a time shift and therefore finds the desired
points of transition.

The third problem to be dealt with is that of éomparing
signals with different numbers of samples. The signals that

are sampled can have different numbers of points since the

26
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signals are sampled nonuniformly at points where the
composite gradient signal indicates stationarity. Noise in
the original signals can cause a different number of samples
- to be taken. In order to match signals containing a
different number of points, the system uses dynamic
iz programming. The technique used is known as unconstrained
e endpoint local minima. The way that the algorithm is set up

in this system 1is that the test utterance is compared to
~ each of the references, with the test utterance driving the

procedure. The first point of the test is compared with the

first, second, and third point of the reference. The best
- match is then found using a weighted Euclidean distance. The
second point of the test is then compared with the best
':f point found in the preceding match plus the next two points
of the reference. Each point of the test utterance is
<. compared similarly until the end of the test utterance. This
method allows the program to find a low distance match of

- signals with different numbers of points.

3.2.1 NON-UNIFORM ALGORITHM

This algorithm attempts to sample the parameters
non-uniformly at the points where the signals are wide sense
stationary. The goal of this algorithm, developed by the
- author, was to make use of a 1local operator to find the
- edges in the envelope detected waveforms so that the number

of time slices required could be reduced. The following is a
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summary of the algorithm followed by an explanation for each

of the steps.

Take 128 samples of each of 8 envelope detected signals

at 10 ms intervals. The sampling 1is started when a

threshold is exceeded.

Run the local operator -1 -2 -3 -2 -1 012 3 2 1 across

each of the 8 sampled signals.

Form a composite signal from the average of the absolute
value of the 8 gradient signals.
Select

slices from the original sampled data at places

where the composite gradient is close to zero.

Use the Unconstrained Endpoint Local Minima (UELM)
dynamic programming method to find the weighted
Euclidean distance to each of the reference patterns.

Use thresholds to reduce computation by terminating

unpromising matches.

Use K Nearest Neighbor with k=3 to find the most

likely match.
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Step 1 which samples at 10 ms intervals is a compromise
between required storage and desired information. The
shortest English phoneme according to Votrax, a manufacturer
of voice synthesis hardware, is approximately 47 ms long. By
sampling at 10 ms intervals we can have several samples per
phoneme. The result is that the sampling window is 1.28
seconds long. Figure 3 shows a typical pattern of the 8
channels for the word 'seven'.

Step 2 which runs a local operator across the signals
is, in essence, a convolution looking for ramps in the
signals. Due to the lowpass nature of the envelope detected
signals, step transitions will not occur. The size of the
operator is matched to the size of transitions that occur.
By correctly matching the operator size, noise can be
smoothed out while at the same time accentuating the desired
ramp transitions. The 1local operator is performing the
function of a matched filter which indicates when a desired
waveform occurs.

Step 3 forms a composite signal that represents steady
state conditions of the original data. A steady state
condition is indicated by a value of the composite signal
near midscale. Figure 4 shows the individual signal with the
local operator applied on the lower 7 traces and with the
composite signal on the upper trace.

Step 4 selects the appropriate time slices from the 8

envelope detected signals for matching. These are time

29
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slices where the signals are wide sense stationary. This is
an attempt to insure that a time slice is taken through each
of the continuant phonemes.

Step S uses an unconstrained local minimum dynamic
programming technique to perform a warping in order to
permit the comparison of samples of different lengths.

Step 6 uses the K Nearest Neighbor classifier so that
more than one reference pattern can be compared. The K
Nearest Neighbor classifier was selected over the Fisher
Linear Discriminant and the Standard Deviation Weighting
classifiers, because the K Nearest Neighbor allows a
non-linear decision boundary which can better approximate

the optimum decision boundary.

3.2.2 UNIFORM ALGORITHM

The Uniform algorithm is basically the same as the
Non-Uniform algorithm with the exception that samples are
taken at fixed time increments, regardless of whether the

signals are constant or not.

1. Take 128 samples of each of 8 envelope detected signals
at 10 ms intervals. The sampling is started when a

threshold is exceeded.

2. Subsample the data to obtain the desired number of

samples.
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3. Use the Unconstrained Endpoint Local Minima (UELM)
| dynamic programming method to find the weighted
Tchebycheff distance to each of the reference patterns.
Use thresholds to reduce computation by terminating

unpromising matches.

4., Use K Nearest Neighbor with k=3 to find the most

likely match.

One inherent advantage of the Uniform algorithm is that
for the same number of time slices, it is shorter.
Therefore, it can be performed quicker with less computing
power. This advantage only applies for the same number of
time slices. Normally one would expect to need more time
slices when using the Uniform algorithm in order to be
assured of having a time slice through each of the
continuant phonemes. The reason is that phonemes have
different 1lengths. In order to be assured of obtaining a
time slice through each continuant phoneme, it is necessary
in the uniform sampling case to sample at least as often as
the shortest phoneme of interest. This entire argument is
based on the assumption that the continuant phonemes contain

the information of interest.
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3.3 VARIABLE DIMENSION STATISTICS

pr—

The wvarying rates at which words are spoken cause a

tata®as

significant problem when trying to calculate the statistics
needed for the different recognition methods. The normal

definitions of averages and variance do not apply since the

PPV X ST

dimensionality of the input parameters differs for different

samples of the same word. The dimensionality varies because

R .

a particular time slice of one word does not represent the ?
same information as the same time slice through a second
utterance of the same word. It therefore became necessary to

define both what will be considered to be an average and

Aifaath JURS A\ o

what 1is the measure of variance. Since the non-uniform

samples are handled by the dynamic programming in the

. SR A ofnk

matching algorithm, the averaging should also be able to be
e performed by using dynamic programming. In order to find the
average, the routine starts with one sample of the word and

runs the dynamic programming to find the best fit with the

fa A A SRR s A D

5; sample to be averaged. This type of averaging is done with
- each suvccessive word to be averaged. This form of averaging
is highly dependent on two starting conditions, the sample
that drives the dynamic programming routine and the distance
measure. Since one of the reasons for performing the average

is so that the variances can be calculated for use with the

Lt RTT 4 G arafadal VoM RS LS

weighting of the Euclidean distance, and the averaging uses

this distance measure to perform the average, the procedure .

must be iterative. The variances are calculated in a
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similar manner, using the averages generated by the
averaging routine to drive the dynamic programming. The
variance is <calculated for each of the eight envelope
detected signals. The reciprocal of these variances are then
used as the weightings when finding the Euclidean distance

between points. Thus the two procedures of finding the

average and finding the variance are inseparably
interlocked.
3.4 SYSTEM

The initial computer system consisted of a

microprocesser system based on a 2-8C. This system was
specifically designed by the author for ease of use with
hardware experiments. The heart of the system was a Z2-80 CPU
running at 4MHz with one wait state. The memory consisted of
64K of Read/Write memory with the upper 2K shadowed by a
PROM with monitor routines. On line storage included two 8
inch single density floppy disk drives. The system had an
analog board capable of 8 channels of analog input in a
range of O0-5 volts, feeding an 8 bit analog to digital
converter. The data analysis and verification was done on an
IBM 3033 with the Michigan Terminal System operating system.
This system was used because of its ability to access and
store large data bases quickly. This system also had a large
library of programs that were useful in the analysis. This

system had a dial-up capability that allowed the target
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system to transfer data over a 1200 baud modem to the IBM

3033.

3.4.1 HARDWARE

The external equipment consisting of amplifiers,
filters and envelope detectors was designed and built
specifically for this project by the author. The output of
the microphone 1is fed into an Automatic Gain Control (AGC)
amplifier. The output of the AGC amplifier is fed to seven
bandpass filters. The outputs of the seven bandpass filters
are buffered, envelope detected, and then buffered again.
This results in eight envelope detected signals, seven from
the bandpass filters and one unfiltered signal. The bandpass
filters are spaced on a logarithmic scale and range from
approximately 300 to 3000 Hertz. This range from 300 to 3000
Hz was chosen since this is the range of a typical voice
communication link such as the telephone. A block diagram of
the external hardware 1is shown in figure 5. The output of
this external equipment is connected to the 8 input channels
on the analog board. The microphone used was an electret
microphone, Realistic #33-1050. Figure 6 shows the automatic
gain control (AGC) amplifier used on the input. The variable
gain element was an LM370. The output of the AGC circuit had
a level of approximately S5 volts peak to peak. The output of
the AGC was fed to the filters. The filters where Reticon

R5620 universal active filters set up in a bandpass

...............
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configuration. [7] These filters are second order switched
capacitor networks. The frequencies of the filters are
dependent upon an external clock. The <clock generator
circuit is shown in figure 7. The external frequencies and
center frequencies of the bandpass filters are shown in the

following table.

FILTER CENTER EXTERNAL
FREQUENCY CLOCK
1 305 31.25KHz
2 447 62.5 KHz
3 653 125.0 KHz
4 977 125.0 KHz
) 1495 250.0 KHz
6 2236 250.0 KHz
7 3342 250.0 KHz

TABLE 4. FILTER FREQUENCIES

All of the filters were programmed for a Q of 10. A plot of
the filter responses is shown in figure 8. The output of the
filters are fed into envelope detectors shown in figure 9.
The envelope detectors had a time constant of 33 ms. The
signal after the detector 1is buffered by a wunity gain

amplifier.

3.4.2 SOFTWARE
The programs in appendix D are the final programs
written by the author. Portions of the programs were written

in PL/M and assembly language.
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INITIALIZATION RECOGNITION
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INIT EAR
| VAN 3

SAMP SAMP DIE3

TABLE 5. SOFTWARE CALLING TREE

PP T WRENY - T

The program INIT is used to obtain the templates that will

be used by the program EAR to recognize a word. The

procedure DIF3 is called by EAR and performs the dynamic

programming. The procedure SAMP is called by both EAR and
INIT and is used to take 128 samples of the 8 envelope
detected waveforms at 10 ms intervals. The recognition
program takes 3-4 seconds to respond to a spoken word, and
requires under 8K of memory for the templates and the
program. The program does not require any special computer
architecture, so should be easily adapted to run on other

systems.

4.0 COST

The additional hardware required for this project can

be built for under $150. A large factor in the low cost of
this hardware was the availability of a new Universal Active
Filter from Reticon, the R5620. This filter costs under §7
and requires no external precision components. This system

is low cost when compared to the $1K-$5K <cost of a

commercial system made by Votan, Lear Siegler, or Interstate
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Electronics. The $1K-$5K cost of a commercial system is as
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deterred most users from adding a voice input capability to

their systems.

5.0 TEST AND EVALUATION

Once the hardware and software were designed and
implemented, the next step was to evaluate the system
performance. The testing was performed in a stepwise manner

in order to optimize portions of the algorithm.

5.1 DATA BASE

In order to analyze the performance of the non-uniform
algorithm, a data base was gathered. The data base consisted
of 10 samples of each of the ten words zero through nine,
from nine different speakers. This data base was gathered
using the target computer. The data was then transferred to
the IBM 3033 for analysis.

The first five speakers were adult males between the
ages of 20 and 40. The second four speakers were adult
females between the ages of 18 and 45. The data was gathered
directly on the system without any means of intermediate
recording. No intermediate recording was done of the data

to prevent the recording process from adding noise or

distortion to the desired signal. The data gathering was
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performed in a relatively quiet, furnished apartment. The
main noise source present was the air noise from the system
cooling fans.

In order to compare the performance of the Non-Uniform
to the Uniform algorithm, a second data base was gathered.
All of the tests in sections 5.2 and 5.2.1 were done using
data in the first data base while all of the tests in
section 5.2.2 were done using data from the second data
base. It was necessary to gather a second data base since
the original data base consisted of the time slices after
the non-uniform sampling. This second data base consisted of
both the non-uniform time slices and the uniform time
slices. Both sampling methods were used on the same
utterance so that a valid comparison could be made of the
two sampling techniques. While this was not ideal, it was
necessary to store only the time slices used in order to
limit the amount of required storage. The second data base
consisted of five speakers, one adult female and four adult
males. These speakers were a subset of the individuals used
in the first data base, recorded under the same conditions.

When analyzing the performance of the algorithms, the
data was used in two different tests. First, the data from a
single speaker was used. When using a single speaker, the
first five utterances of each of the ten words were
averaged to form that speakers template for that word. The

second five utterances of each of the words were not used so
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that they could be kept as a control group. Each of the
utterances from that speaker was compared against the ten
templates. The second way the data was used was to compare
data from five speakers at a time. 1In this case, each
utterance was compared against 50 templates, the ten words
from each of the five speakers.

A confusion matrix is a matrix used to represent the
performance of a system. Each row in the matrix represents
the actual word spoken. Each column in the matrix represents
a word that the system picked as the answer. The entries in
a row represent the number of times that the system picked
the template, corresponding to the column number, as the
best match.

Confusion matrices were generated for the five speaker
tests which had the words zero thru nine, in order, repeated
five times, once per speaker, along each edge. These
confusion matrices show what word was recognized for each of

the actual spoken words.

5.2 RESULTS

The first area to be investigated was that of the
weighting coefficients. The first weighting to be used was 1
2 2 4 2 2 1 8. These are the weighting coefficient wl
through w8, in order, used with the weighted distance
measures. This set of weightings was experimentally

determined in the early stages of development to be a
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reasonable starting point. The starting point did not really
matter since the procedure of finding an average and
calculating the variances was repeated until the weighting
coefficients were inversely proportional to the calculated
variances. The goal of the weighting was to weight each
parameter inversely to its variance. The following table
lists the 'various weightings used. The final weighting
settled upon was 4 4 1 1 2 2 2 1 which resulted in 74%
correct recognition of the training group and 74), correct
recognition of the control group. With this weighting of 4 4
1122 2 1 the desired weighting inversely proportional to
the variance was obtained. Since the variance was dependent
upon the average which was dependent on the weighting
coefficients, an iterative approach was necessary. The
iterative procedure consisted of using one set of weightings
to find an average, using this average to calculate the new
variances, and using these new variances to set the
weighting coefficients. This procedure was repeated until
the weightings converged to be inversely proportional to the
calculated variances. This problem of interdependence was

discussed in section 3.3.
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WEIGHTING TRAIN CONTROL
12242218 70%
22121224 70% 63%
42111224 68Y%
44112221 749, 74%

TABLE 6. EFFECTS OF CCEFFICIENT WEIGHTING

As can be seen, the algorithm is not extremely sensitive to
the weighting coefficients. However, the 1last set of
weightings, which was approximately inverse to the
calculated variance, did obtain the best results. The
weightings were purposely Kkept as integer powers of 2 in
order to facilitate programming on the target computer.

An attempt was made to use different weightings for
different reference words. This resulted in a reduction of
the correct recognition rate to 63%-64%. This was not
totally unexpected since the errors being compared are
measured with rulers of different scales when different
weightings are used.

The next area to be investigated was that of
thresholding. Thresholds were determined from the training
data that would allow each of the training words to progress
through a match with the proper reference pattern without
reaching the threshold. These thresholds were then used in
the algorithm. The result was a 79Y% correct recognition from
the training set but a decrease to 66% correct recognition

from the control group. The rapid decline in the control
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group was caused by the thresholds being too low, which ;
caused the correct template to be eliminated. When the
thresholds were raised to twice their lowest value, the 4
percentage of correct recognition returned to its former
value. This shows that although it is possible to use low
thresholds to change the outcome, the values low enough to
do this are quite critical. The real value of thresholding ;
for this project is the reduction in time for the algorithm )
to run by eliminating matches that have very high errors

early. The results of how well the data clustered for each

speaker was determined by using an average only from that
speakers words. The first set of data is without termination

INTERPOLATION as discussed in section 3.1.4

LTS etk S e oo

TABLE 7. RESPONSE WITHOUT INTERPOLATION

- SPEAKER TRAIN CONTROL
. 1 100% 92Y% y
- 2 72% 68% }
] 3 90Y 74% {
) 4 82% 78% )
5 98Y% 94Y 1
o 6 86% )
= 7 90Y% ;
b 8 94Y )
9 90Y% *
!
‘|
-l

o mans

As 1is quite evident from the above, speaker 2 and 4 did not

cluster very well. This could also explain why the overall

2 ¢ 8 4.

P

recognition rate for the five speakers together was low.
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The termination procedure was modified for the dynamic
programming algorithm. Previously the algorithm would
continue for the full 1length of the test utterance
regardless of whether the end of the reference pattern was
reached. The result was that if the test pattern is longer
than the reference, then the entire difference will be added
as error. With the modification, the procedure stops when
the end of the reference 1is reached. At this point, the
error is multiplied by the length of the test utterance and
divided by the point where the dynamic program terminated.

This results in a linear interpolation of the error at

termination.

SPEAKER TRAIN CONTROL
1 100% 94Y%
2 88% 78%
3 94Y% 82%
4 78% 76%
5 98Y% 98%

TABLE 8. RESPONSE WITH INTERPOLATION

When compared with the unmodified procedure, the results are
a higher or equal percentage of correct recognition in all
cases except one. The decrease in correct recognition that
occurred when the interpolation is not used is caused by the
mismatched endpoints contributing too high a percentage of
the error. The results of this test show that the method of

linear interpolation as advocated by Rabiner does provide
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better results than dynamic programming without
interpolation.

The next test run was to use one template for each word
per speaker. In this case, this meant five speakers at ten
words each for a total of fifty reference templates. This
test allows the comparison of each of the three speech
recognition problems, Word recognition, Speaker recognition,
and Word-Speaker recognition. The following table summarizes

the results.

TRAIN CONTROL
WORD-SPEAKER 72% 60%
WORD 83Y% 78%
SPEAKER 76% 65Y,

TABLE 9. 50 CLASS PROBLEM WITHOUT INTERPOLATION

This test confirmed that Word-Speaker recognition is the
hardest type of speech recognition to perform. In order to
perform Word-Speaker recognition, the system must perform
both Word and Speaker recognition. It would therefore be
unreasonable to expect higher recognition rates on the

Word-Speaker problem than on the lowest of the Word or

Speaker recognition problems.

The 50 different error distances were rank ordered. The

o e S

second best match, second lowest error distance, was

examined to see if there was a good likelihood that some

— o

further processing of the top two results could increase the
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percentage of correct recognition. The confusion matrix was
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. done for the second best match, with the following results.
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WORD-SPEAKER 15%
- WORD 59%
: SPEAKER 26%

TABLE 10. 50 CLASS PROBLEM WITHOUT INTERPOLATION, SECOND BEST

The combining of the results gives 87% correct word-speaker
recognition in the first two answers out of 50 possible
choices. The combined recognition rate of 87% correct in the
top two responses out of 50 possikle responses gave an
indication that other classifiers should be examined. These
classifiers are the subject of the tests shown in section
5.2.1.

The above confusion matrices were redone with two
changes. The dynamic programming routine termination
procedure was modified as discussed above, and the number of
time slices used as a ninth parameter. Figure 20 and 21 show
the resulting confusion matrices for the training and

control groups. The results were summarized as follows.

TRAIN CONTROL
WORD-SPEAKER 81Y 66%
WORD 90% 81%
SPEAKER 862, 70Y

TABLE 11. 50 CLASS PROBLEM WITH INTERPOLATION
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The second best choice was also run for the training set.

TRAIN
WORD-SPEAKER 14Y
WORD 61
SPEAKER 25%

TABLE 12. 50 CLASS PROBLEM WITH INTERPOLATION, SECOND BEST

Combining the best two answers on the training data results
in 95Y% correct word-speaker recognition in the top two
answers. Again there is confirmation of the previous results
that 1linear interpolation 1is the superior termination
method, and that the second best choice out of 50 contains a
significant portion of the correct responses.

Changing the speakers and using data from speakers
1,3,5,8,and 9 to eliminate the suspect data from speakers 2

and 4 gave the following results:

TRAIN CONTROL
WORD- SPEAKER 89% 71%
WORD 95% 80%
SPEAKER 90% 78Y

TABLE 13. 50 CLASS PROBLEM WITH INTERPOLATION, SPEAKERS

1,3,5,8,9
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As can be seen from comparing the control WORD recognition

PP WD

results, the change of speakers was essentially

!
oAt

insignificant.

5.2.1 CLASSIFIERS

Since the 50 <class statistics showed that very high

percentage rates of correct recognition occurred in the top
two answers, it was decided to see if some other form of
classifier could improve the results. Different classifiers
were tried on the 10 class problems for each speaker. The
error distances for each of the words was used as the input
parameters. Three different methods of classification were
tried, K Nearest Neighbor (original method), Fisher Linear
Discriminant, and Standard Deviation Weighting. The

following table summarizes the results.

K Nearest Neighbor Fisher Standard Deviation
Speaker Train Control Train Control Train Control
1 100% 94Y% 94 82% 100% 90%

2 88Y% 78% 82% 58Y% 86% 52%
3 94y, 82% 967 66% 100% 76%
4 78% 76% 86% 72% 92% 70%
S 98Y% 98Y% 100% 78% 98Y% 82%

TABLE 14. EFFECTS OF CLASSIFIERS

As can be seen from the above table, the K Nearest Neighbor
method provided the best results. The Fisher and Standard
Deviation <classifiers did not perform as well as the K

Nearest Neighbor classifier. This was the expected result,
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as the Fisher and Standard Deviation classifiers have linear
boundaries between classes. The non-linear boundaries of the
K Nearest Neighbor classifier allows a closer approximation
to the intersections of the probability density functions
when the <c¢lasses have equal a priori probabilities. Using
the intersections of probability density functions is the
well known technique of a Bayes Classifier which provides

the optimum decision boundary.

5.2.2 NON-UNIFORM VS UNIFORM

At this point it was determined that the non-uniform
algorithm had been heuristically optimized as well as
possible. The next step was to compare the change in
performance when the sampling method was changed from
non-uniform to uniform sampling. Five methods were compared,
non-uniform, uniform with 8 slices, uniform with 16 slices,
uniform with 16 slices with a delta of 6, and uniform with 8
slices with the dynamic programing delta increased from 3 to
5. Changing the delta of the dynamic program changes the
amount of authority that the dynamic program had to expand

or contract the reference template.
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NON-UNIFORM UNIFORM UNIFORM UNIFORM UNIFORM
8 SLICES 16 SLICES 16 SLICES 8 SLICES
DELTA 6 DELTA 5

SPEAKER

1 TRAIN 94% 98Y% 98Y% 98Y% 92%
1 CONTROL  72% 98Y, 96% 98% 869
2 TRAIN 96% 100Y, 98% 98Y% 86%
2 CONTROL  76Y 98Y% 70Y 100% 70Y,
3 TRAIN 86% 94Y 90% 929 84
3 CONTROL  80Y% 90¥, 849 88% 88%
4 TRAIN 92% 100% 90% 90% 949
4 CONTROL  82% 96% 849 90% 90Y,
5 TRAIN 98Y 100% 100% 98% 90%
5 CONTROL  96% 98Y 98% 98Y 949,

TABLE 15. COMPARISON OF UNIFORM VS NON-UNIFORM SAMPLING

The uniform 8 slice algorithm with the standard delta of 3
was found to be superior to any of the other methods. This
is especially apparent when looking at the control group
results. This combination of 8 slices with a delta of 3
provided the dynamic program enough information and
sufficient authority to perform the warping. This test
showed that increasing the number of time slices does not
necessarily mean better performance. The reason that
increasing the number of time slices does not necessarily
increase performance is that the allowable dynamic program
paths change. That is, paths that previously existed are no
longer permitted, and new paths that did not previously
exist are now allowed. The data also demonstrated that the
experimentally determined parameter delta, which controls
the authority of the dynamic program, had an experimentally

determined optimal value of 3. Increasing or decreasing the
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value of delta caused the results to decline. The
Non-uniform algorithm did not perform as well as expected.
This was most likely caused by the improper selection of the
non-uniform samples. Other schemes of picking time slices
should be considered.

The next test was to look at the differences between
the Euclidean and Tchebycheff distance measures. The
Unifornm, Non-uniform algorithms, and a method without
dynamic programming were run with both distance measures in

order to compare the results.

NON-UNIFORM UNIFORM NO DYNAMIC
8 SLICES PROGRAMMING
EUCLID TCHEB EUCLID TCHEB EUCLID TCHEB
SPEAKER
1 TRAIN 94y  96% 90% 98Y% 64% 72%
1 CONTROL  72%  80% 96% 98Y, 549 60%
2 TRAIN 96%  98Y 98%  100% 249 38Y%
2 CONTROL 76%  76% 92Y 98Y% 369 38%
3 TRAIN 86% 84Y 84% 94Y 549 62%
3 CONTROL 80% 82% 78% 90% 429, 54%
4 TRAIN 92%  96Y% 96%  100% 58% 64%
4 CONTROL 82% 80% 90% 96% 64% 70%
S TRAIN 98%  96% 98%  100% 729 80%
5 CONTROL 96%  96% 96% 98Y 649 76%

TABLE 16. COMPARISON OF EUCLIDEAN VS TCHEBYCHEFF

As can be seen from the above results, the best method still
is the Uniform algorithm run with 8 time slices and the
Tchebycheff distance measure. This test dramatically showed

the effects of the dynamic programming. Without some form of
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time warping the results fell off drastically. This drastic
decline in correct recognition was another confirmation of
the inherent time variability of spoken words.

The last major test run was to run all five speakers
utterances against the templates of each of the speakers
words. The resulting confusion matrices are shown in

appendix C, and tabulated below.

NON-UNIFORM UNIFORM
8 SLICES
TRAIN CONTROL TRAIN CONTROL
WORD-SPEAKER 86% 63 96% 87%
WORD 91Y% 86% 98% 96%
SPEAKER 90% 70 97% 90%

TABLE 17. 50 CLASS PROBLEM, NON-UNIFORM VS UNIFORM

The Uniform algorithm with 8 time slices performed very well
for the intended word recognition problem giving 989 correct
responses for the training data and 96% correct for the
control data. A significant observed from these results is
the indication that the templates used were valid. That 1is,
the same templates performed almost as well on the control
data as the training data. This test showed that the final
Uniform algorithm with 8 time slices and a dynamic
programming delta of 3 was able to give comparable results

to the word recognition systems listed in section 2.0.
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6.0 DISCUSSION AND CONCLUSIONS

g! The

verified to be operational was to determine the weighting

first part of this project after the hardware was

factors to be wused with the distance measures. An optimum
e weighting was found, and it was also found that the
algorithm had a low sensitivity to changes in the weighting
coefficients. The next area of investigation was that of the
termination procedure for the dynamic programming section.
It was found that scaling by the stopping point as discussed
by Rabiner to be the superior method. Different classifiers
were used with the minimum distance classifier performing
the best. At this point it was determined that it would take
a major change to the algorithm to improve the results.

The changes made to the Non-Uniform algorithm resulted
in the Uniform algorithm. There were now three parameters
that could be changed in order to optimize the algorithm.
These three parameters were the number of time slices used,
the value of delta in the dynamic programming, and the
distance measure. No analytical method was discovered to
optimize the the value of delta. The value of delta was
experimentally determined by comparing the effects of
different values. In comparing all of the tests run, it was
shown that the Uniform algorithm using weighting
coefficients of 4 & 1 12 2 2 1, using 8 time slices, a
delta of 3, and the Tchebycheff distance measure, performed

the best for word recognition. This algorithm was arrived at
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by optimizing each part of the algorithm separately.
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The non-uniform and uniform algorithms were compared
with a straight forward method that did not use dynamic
programming or weighting coefficients. Without dynamic

programming or weighting coefficients the results fell off

POPIMFY- o™ WUSICINE. YO BN SR

dramatically. The reduction in correct recognition was due
to the varying rates at which words are spoken. Without some
form of compensation for the varying rates, poor results can

be expected. This comparison showed that the dynamic

i
|

programming was absolutely essential. Unfortunately the
non-uniform method did not perform as well as expected.
Methods of picking non-uniform time slices warrant further

investigation.

An important sidelight to this project was the
discovery of a method for finding the statistics of data
that had a varying number of parameters. The method was to
use the dynamic programing to calculate the statistics. The
results from the non-uniform algorithm were good enough to
show that this method of using dynamic programming to find
statistics provided a reasonable template, average, for the
varying parameters.

The proposed algorithm was implemented on the target
system. The program fulfilled the project objectives, with
the only drawback being that the program takes 3-4 seconds
to respond. This program could easily be sped up on a system

that had multiprocessing capability. However, most
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microcomputers available today do not have multiple
processors. Except for being a little slower than desired,
the programs performed very well and can easily be adapted
for use on any of the present day 8 bit microprocessors.
Appendix D shows the programs that were written. The program
INIT stores samples of the speakers voice to be used as the
templates. The program EAR performs the actual recognition.
The low cost, under $150, makes this hardware
configuration very appealing. Since the filters used
require no external precision components, only a clock, set
up was very easy. There was no tuning required of the
filters. The center frequency. was dependent on the digital
inputs and the external clock. This meant that no precision
equipment was needed to align the filters. The programs and
hardware described in this paper can easily be implemented
to produce a practical, cost constrained speech recognition

system.
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PARTS LIST
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PARTS LIST

AGC

ohms
Cl1 . 1uF R1 1K
Cc2 .1uF R2 100K
C3 1uF R3 1K
C4 . luF R4 1K
CS 10uF RS 10K POT

R6 1K

D1 1N4148 R7 10K
IC1l LM348
IC2 LM370
CLOCK GENERATOR

ohms
IC3 7404 R8 270
IC4 74LS393 R9 270

XTAL 1MHz

ENVELOPE DETECTOR

Cc6 . 1uF

c7 1uF

D2 1N4148

IC5 1LM348
ohms

R10 1K

R11 10K

R12 1K

R13 33K

FILTER

RETICON R5620

TABLE 18. PARTS LIST
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FIGURE 20. TRAINING DATA SPEAKERS 1,2,3,4,5
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FIGURE 21. CONTROL DATA SPEAKERS 1,2,3,4,5
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00000000000Q00000000000000000000000000005000000000
00000000000000000000010000000000000000000400000000
00000000000000000000000000000000000000000040000010
00000000000000000000000000000000000000000005000000
00000000000000000000000000000000000000000000500000
00000000000000000000000000000000000000000000050000
00000000000000001000000000000000000000000000004000
00000000000000000000000000000000000000000000001400
00000000000000000000000000000000000000000000000050
00000000000000000000000000000000000000000000000005

FIGURE 22. TRAINING DATA SPEAKERS 1,3,5,8,9
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50000000000000000000000000000000000000000000000000
04000000000100000000000000000000000000000000000000
00400000000000000000000000001000000000000000000000
00050000000000000000000000000000000000000000000000
00002000000000100000000010000010000000000000000000
00000300000000000000000000000100000000000010000000
00000050000000000000000000000000000000000000000000
00000014000000000000000000000000000000000000000000
00000000500000000000000000000000000000000000000000
00000000050000000000000000000000000000000000000000
00000000003000000000100000000000000000000010000000
00000000000400000000000000000100000000000000000000
00000000000040001000000000000000000000000000000000
000000000010040000000000000000000000060000000000000
00000000001000200000000010000010000000000000000000
00000100000000030000000001000000000000000000000000
00000010000000004000000000000000000000000000000000
00000000000000100200000000000000000001000000001000
00000000000000000050000000000000000000000000000000
00000000030000000002000000000000000000000000000000
00000000000000000000500000000000000C00000000000000
01000000000000000000040000000000000000000000000000
00000000000000000000005000000000000000000000000000
00000000000000000000000500000000000000000000000000
00003000000100000000000010000000000000000000000000
00000100000000000000000002000100000000000000000001
00000000000000001000000000400000000000000000000000
00000000000000000000000000050000000000000000000000
00000000000000000000000000005000000000000000000000
00000000010000000000000000000300001000000000000000
00000000000000000000000000000020000010000000000020
00000000000100000000000000000003000000000100000000
00000000000000000000100000000000300000000010000000
00000000001000000000000000000010030000000000000000
00000000000100000000100000000100002000000000000000
00000100010000000000000000000100000200000000000000
00000020000000001000000000000000000020000000000000
00000000000000000000000000000010000003000010000000
00000010000000000000000000000000000000400000000000
00000000000000000000000000000110000000030000000000
00000000000000000000000000000000000000004000000100
00000000000000000000000001000000000000000300010000
00000000000000000000000000000020000000000020001000
00000000000000000000000000000000000000002003000000
00000000000000000000000000000000000000000000500000
00000000000000000000000001000000000000000000040000
00000010000000000000000000000000000000001000003000
00000000000000000000000000000000000000000000011300
00000000000000000000000000000000000000000000000050
00000000000000000000000000000000000000000000000005
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FIGURE 23. CONTROL DATA SPEAKERS 1,3,5,8,9

S
LN VI RN

s
a0 T
xac‘l

80 {




VONONMPWONHOOUWONOOVPWNHOOWONOOUMBWNHOOUWONOOMPBPWNKFOOUONOOTOMPWNEHO

..................

40000000000000100000000000000000000000000000000000
05000000000000000000000000000000000000000000000000
00500000000000000000000000000000000000000000000000
00050000000000000000000000000000000000000000000000
00005000000000000000000000000000000000000000000000
00000300010000000000000000000000000000010000000000
00000040000000000000000000000000000000000000001000
00000005000000000000000000000000000000000000000000
00000000500000000000000000000000000000000000000000
00000000050000000000000000000000000000000000000000
00000000004000000000000000000000000000000000001000
00000000000500000000000000000C00000000000000000000
01n000000000050000000000000000000000000000000000000
00000000000004000001000000000000000000000000000000
00001000000000400000000000000000000000000000000000
00000000000000040000000000000000000100000000000000
00000000000000004000000000000000000000000000001000
00000000000000000500000000000000000000000000000000
00000000000000000050000000000000000000000000000000
00000000000000000005000000000000000000000000000000
00000000000000000000500000000000000000000000000000
00000000000000000000050000000000000000000000000000
00000000000000000000005000000000000000000000000000
00000000000000000000000500000000000000000000000000
00000000000000000000000040000000001000000000000000
00000000000000000000000005000000000000000000000000
00000000000000000000000002030000000000000000000000
00000000000000000000000000020000000001010000001000
00000000000000000000000000005000000000000000000000
00000000000000000000000000000400000000010000000000
00000000000000000000000000000050000000000000000000
00000000000000000000000000000005000000000000000000
00000000000000000000000000000000410000000000000000
00000000000000000000000000000000040000000000000010
00000000000000000000000000000000005000000000000000
00000000000000000000000000000000000500000000000000
00000002000000000000000000000000010010000000001000
00000000000000000000000000000000000004000000001000
00000000000000000000000000000000000000500000000000
00000000000000000000000000000100000000040000000000
00000000000000000000000000000000000000005000000000
00000000010000000000000001000000000000000300000000
00100000000000000000000000000000000000000040000000
00000000000000000000000000000000000000000004000010
00002000000000000000000000000000000000000000300000
00000000000000000000000000000000000000000000050000
00000001000000001000000000000000000000000000003000
00000000000000000000000000000000000000000000000500
00000000000000000000000000000000000000000000000050
00000000000000000000000000000000000000000000000005

FIGURE 24. TRAINING DATA NON-UNIFORM ALGORITHM
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20000000000000000000000000000020000000000000001000
01000100000000000000000000000001000000000200000000
00400000000000000000000000000000100000000000000000
00040000000000000000000000000000010000000000000000
00003000000000000000000000000000001000000000100000
00000300000000000000000002000000000000000000000000
00000010000000000000000000000000000000000000004000
000001030000000000000C0000010000000000000000000000
00000000400000000000000000001000000000000000000000
0000010003000000000000000000000000C000000000010000
00000000002001000000000000000000100000000000001000
00000000000000050000000000000000000000000000000000
00000000000050000000000000000000000000000000000000
00000000000004000001000000000000000000000000000000
00000000000000300000000000000000002000000000000000
00000000000000050000000000000000000000000000000000
00000000000000003000000000000000100010000000000000
00000000000000000300000000000000000001000000000100
00000000000000000050000000000000000000000000000000
00000000000001020002000000000000000000000000000000
00000000000000000000500000000000000000000000000000
00000000010000000000010000000000000000030000000000
00000010000000000000002000000000200000000000000000
00000000000000000000000400000000010000000000000000
00000000000000000000000040000000001000000000000000
00000000000000010000000003000000000100000000000000
00000000000000000000000000030000000000000000002000
00000001000000000000000000000000000001010000001100
00000000100000000000000000004000000000000000000000
00000000000000000000000000000200000000030000000000
00000000001000000000000000000040000000000000000000
00000000000000000000010001000001000000000000020000
00000000000000000000000000000000500000000000000000
00000000000000000000000000000000050000000000000000
00000000000000000000000000000000002000000000300000
00000000000000010000000000000000000400000000000000
00000000000000000000000000000000000030000000002000
00000002000000000000000000000000000012000000000000
00000000000000000000000000002000000000300000000000
00000000000000000000000001000000000000040000000000
00000000000000000000000000000000000000005000000000
00000000010000000000000000000000000000000400000000
00000000000000000000000000000000000000000050000000
00010000000000000000000000000000010000000003000000
00005000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000050000
00000001000000000000000000000000000000000000004000
00000001000000000000000000000000000000000000000400
00000000000000000000000000000000000000100000000040
00000000000000000000000000000000000000000000000005
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FIGURE 25. CONTROL DATA NON-UNIFORM ALGORITHM

82

I T T IR ST SRR . . . L, AT et - . . ¢ ‘ . - .
'« - . L e IR ol - . » . Mt - et - . s ot et ST -
AR I R R N TR T 5 ) a et s et SR ST T AT




0 40000000000000000001000000000000000000000000000000
1 05000000000000000000000000000000000000000000000000
2 00500000000000000000000000000000000000000000000000
3 00050000000000000000000000000000000000000000000000
4 00003000000000000000000000000000002000000000000000
5 00000500000000000000000000000000000000000000000000
6 00000050000000000000000000000000000000000000000000
7 00000005000000000000000000000000000000000000000000
8 00000000500000000000000000000000000000000000000000
9 00000000050000000000000000000000000000000000000000
0 00000000005000000000000000000000000000000000000000
1 00000000000500000000000000000000000000000000000000
2 00000000000050000000000000000000000000000000000000
3 00000000000005000000000000000000000000000000000000
4 00000000000000500000000000000000000000000000000000
S 00000000000000050000000000000000000000000000003000
6 00000000000000005000000000000000000000000000000000
7 00000000000000000500000000000000000000000000000000
8 00000000000000000050000000000000000000000000000000
9 00000000000000000005000000000000000000000000000000
0 00000000000000000000500000000000000000000000000000
1 00000000000000000000050000000000000000000000000000
2 00000000000000000000005000000000000000000000000000
3 00000000000000000000000500000000000000000000000000
4 00000000000000000C00000040000001000000000000000000

5 00000000000000000000000005000000000000000000000000
6 00000000000000000000000000310000000001000000000000
7 00000000000000000000000000140000000000000000000000
8 00000000000000000000000000005000000000000000000000
9 00000000000000000000000000000500000000000000000000
0 000000000006000000000000000000050000000000000000000
1 000000000000006000000000000000005000000000000000000
2 00000000000000000000000000000000500000000000000000
3 00000000000000000000000000000000050000000000000000
4 00000000000000000000000000000000005000000000000000
5 00000000000000000000000000000000000500000000000000
6 00000000000000000000000000000000000050000000000000
7 00000000000000000000000000000000000005000000000000
8 00000000000000000000000000000000000000500000000000
9 00000000000000000000000000000000000000050000000000
0 00000000000000000000000000000000000000005000000000
1 00000000000000000000000000000000000000000500000000
2 00000000000000000000000000000000000000000050000000
3 00000000000000000000000000000000000000000005000000
4 00000000000000200000000000000000001000000000200000
5 00000000000000000000000000000000000000000000050000
6 00000000000000000000000000000000000000000000005000
7 00000000000000000000000000000000000000000000000500
8 00000000000000000000000000000000000000000000000050
9 00000000000000000000000000000000000000000000000005
FIGURE 26. TRAINING DATA UNIFORM ALGORITHM (8 SLICE)
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0
1
2
3
4
S
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4

5
6
7
8
9
o
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
FI

30000000002000000000000000000000000000000000000000
05000000000000000000000000000000000000000000000000
00500000000000000000000000000000000000000000000000
00040000000000000000000000000000010000000000000000
00003000000000000000000000000000101000000000000000
00000400000000000000000000000000000100000000000000
00000050000000000000000000000000000000000000000000
00000005000000000000000000000000000000000000000000
00000000500000000000000000000000000000000000000000
00000000050000000000000000000000000000000000000000
00000000005000000000000000000000000000000000000000
00000000000500000000000000000000000000000000000000
00000000000050000000000000000000000000000000000000
00000000000005000000000000000000000000000000000000
00000000000000400000000000000000001000000000000000
00000000000000040001000000000000000000000000000000
00000000000000005000000000000000000000000000000000
00000000000000000500000000000000000000000000000000
00000000000000000050000000000000000000000000000000
00000000000000000005000000000000000000000000000000
00000000000000000000500000000000000000000000000000
00000000000000000000030000000002000000000000000000
00000000000000000000005000000000000000000000000000
00000000000000000000000500000000000000000000000000
00000000000000000000000050000000000000000000000000
00000000000000000000000003000000000200000000000000
00000000000000000000000000130000000000000000000100
00000000000000000000000000130000000000000000000100
00000000000000000000000000005000000000000000000000
00000000000000000000000000000500000000000000000000
00000000000000000000000000000040100000000000000000
00000000000000000000000000000005000000000000000000
00000000000000000000000000000000500000000000000000
0000000000000000000000000000C000050000000000000000
00000000000000300000000000000000002000000000000000
00000000000000000000000000000000000400000000010000
00000000000000000000000000000000000050000000000000
00000000000000000000000000000000000012000000000200
00000000000000000000000000000000000000500000000000
00000000000000000000000000000000000000050000000000
00000000000000000000000000000010000000004000000000
00000000000000000000000000000000000000000500000000
00000000000000000000000000000000000000000050000000
00010000000000000000000000000000000000000004000000
00000000000000300000000010000000001000000000000000
000000000000000000C0000000000000000000000000050000
00000000000000000000000000000000000000000000005000
00000000000000000000000000000000000000000000000500
00000000000000000000000000000000000000000000000050
00000000000000000000000000000000000000000000000005
GURE 27. CONTROL DATA UNIFORM ALGORITHM (8 SLICE)
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( ISI1S-11 PL/M-80 V3.1 COMPILATION OF MODULE INIT
OBJECT MODULE PLACED IN :F1l:INIT.OBJ
COMPILER INVOKED BY: PLM80 :F1:INIT.SRC
INIT: DO;
/* THIS PROGRAM LOADS THE SAMPLES TO BE USED AS */
/* TEMPLATES FOR THE WORD RECOGNITION PROGRAM */
CO: PROCEDURE(CHAR) EXTERNAL;
e DECLARE CHAR BYTE; #
-y END CO; |
‘5 CI: PROCEDURE BYTE EXTERNAL; i
e END CI;
EXIT: PROCEDURE EXTERNAL;
. END EXIT;
SAMP: PROCEDURE EXTERNAL;
END SAMP;
DECLARE DATOPT ADDRESS;
-, DECLARE DAT1PT ADDRESS;
N DECLARE DAT2PT ADDRESS;
@ DECLARE DAT3PT ADDRESS;
52 DECLARE DAT4PT ADDRESS;
DECLARE DATSPT ADDRESS;
.. DECLARE DAT6PT ADDRESS;
Py DECLARE DAT7PT ADDRESS;
- DECLARE DATO BASED DATOPT (128) BYTE;
DECLARE DAT1 BASED DAT1PT (128) BYTE;
DECLARE DAT2 BASED DAT2PT (128) BYTE;

£ et
..‘v-_';a-
BV AN

AR
Sl

ﬁ DECLARE DAT3 BASED DAT3PT (128) BYTE;
N DECLARE DAT4 BASED DAT4PT (128) BYTE;
- DECLARE DATS5 BASED DATSPT (128) BYTE;

- DECLARE DAT6 BASED DAT6PT (128) BYTE;
DECLARE DAT7 BASED DAT7PT (128) BYTE;
DECLARE PT BYTE; !
DECLARE DP BYTE;

DECLARE FATOPT ADDRESS;

DECLARE FATO BASED FATOPT (1000)BYTE;
DECLARE SAM BYTE;

DECLARE BANK BYTE;

N DECLARE I BYTE;

¢ DATOPT=0A000H;
Y
04
;

4

RREN I

DAT1PT=0A080H;
DAT2PT=0A100H;
DAT3PT=0A180H;
DAT4PT=0A200H;
DATSPT=0A280H;
N DAT6PT=0A300H;
X DAT7PT=0A380H;

N FATOET=06800H; ;
; ;
> :
1 J
i '
%
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/* INPUT THE SAMPLE NUMBER AND THE DIGIT TO BE STORED */
START: CALL CO(23H);

BANK=CI AND 7FH;

CALL CO(BANK);

IF BANK=1AH THEN CALL EXIT; /* CONTROL Z */

CALL CO(3FH);

SAM=CI AND 7FH;

CALL CO(SAM);

IF SAM=1AH THEN CALL EXIT; /* CONTROL Z */

CALL SAMP;
7/
/* MOVE THE TIME SLICES TO THE CORRECT LOCATIONS */
/* IN MEMORY */
SAM=SAM-30H;
BANK=BANK-30H;
DO I=0 TO 31;

PT=1%*8;

DP=1*%*4;

FATO( (BANK*10+SAM) *256+PT )=DATO(DP);

FATO( (BANK*10+SAM) *256+PT+1)=DAT1(DP);

FATO( (BANK*10+SAM) *256+PT+2)=DAT2(DP);

FATO( (BANK*10+SAM) *256+PT+3 )=DAT3(DP);

FATO ( (BANK*10+SAM) *256+PT+4)=DAT4(DP) ;

FATO( (BANK*10+SAM) *256+PT+5)=DATS(DP) ;

FATO( (BANK*10+SAM) *256+PT+6 )=DAT6(DP) ;

FATO( (BANK*10+SAM) *256+PT+7)=DAT7(DP);
END;
GOTO START;
END INIT;
MODULE INFORMATION:
CODE AREA "1ZE
VARIABLE AKEA SIZE
MAXIMUM STACK SIZE
75 LINES READ
O PROGRAM ERROR(S)
END OF PL/M-80 COMPILATION

025DH 605D
0017H 23D
0006H eD
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ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE EAR

OBJECT MODULE PLACED IN :F1:EAR.OBJ

COMPILER INVOKED BY: PLM80 :F1:EAR.SRC

EAR: DO;

/* THIS PROGRAM IS THE WORD RECOGNITION PROGRAM */

EXIT: PROCEDURE EXTERNAL;

END EXIT;

SAMP:  PROCEDURE EXTERNAL;

END SAMP;

DIF3: PROCEDURE (SQPT) EXTERNAL;
DECLARE SQPT ADDRESS;

END DIF3;

CSTS: PROCEDURE BYTE EXTERNAL;

END CSTS;

DECLARE DATOPT ADDRESS;

DECLARE DAT1PT ADDRESS;

DECLARE DAT2PT ADDRESS;

DECLARE DAT3PT ADDRESS;

DECLARE DAT4PT ADDRESS;

DECLARE DATSPT ADDRESS;

DECLARE DAT6PT ADDRESS;

DECLARE DAT7PT ADDRESS;

DECLARE DATO BASED DATOPT (128) BYTE;

DECLARE DAT1 BASED DAT1PT (128) BYTE;

DECLARE DAT2 BASED DAT2PT (128) BYTE;

DECLARE DAT3 BASED DAT3PT (128) BYTE;

DECLARE DAT4 BASED DAT4PT (128) BYTE;

DECLARE DATS BASED DATSPT (128) BYTE;

DECLARE DAT6 BASED DAT6PT (128) BYTE;

DECLARE DAT7 BASED DAT7PT (128) BYTE;

DECLARE PT BYTE;

DECLARE DP BYTE;

DECLARE GATOPT ADDRESS;

DECLARE GATO BASED GATOPT (256) BYTE;

DECLARE I BYTE;

DECLARE LINEAR (256)ADDRESS;

GATOPT=0COOOH;

o DATOPT=0AO00H;

- DAT1PT=0AOS0H;

o DAT2PT=0A100H;

o DAT3PT=0A180H;

DAT4PT=0A200H;

DATSPT=0A280H;

DAT6PT=0A300H;

DAT7PT=0A380H;

DO I=0 TO 255;
LINEAR(I)=I;
END;
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................
.................................

START: CALL SAMP;

DO I=0 TO 31;

PT=1%*4;

DP=1+*8;

GATO (DP )=DATO (PT) ;
GATO(DP+1)=DAT1(PT);
GATO(DP+2)=DAT2(PT);
GATO(DP+3)=DAT3(PT);
GATO(DP+4)=DAT4(PT);
GATO(DP+5)=DATS(PT);

. GATO (DP+6 ) =DAT6 (PT) ;

GATO(DP+7)=DAT7(PT);
END;
CALL DIF3(.LINEAR(O));
IF CSTS=0FFH THEN CALL EXIT;
GOTO START;
END EAR;
MODULE INFORMATION:
CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
65 LINES READ
O PROGRAM ERROR(S)
END OF PL/M-80 COMPILATION

Ol6EH 366D
0215H 533D
O002H 2D
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ISIS-I11 PL/M-80 V3.1 COMPILATION OF MODULE DIFF
OBJECT MODULE PLACED IN :F1:DIF3.0BJ

COMPILER INVOKED BY:

DIFF:

/* THIS PROCEDURE PERFORMS THE DYNAMIC PROGRAM MATCH */

EXIT:

PLM80O :Fl:DIF3.SRC
DO;

PROCEDURE EXTERNAL;

END EXIT;
CO: PROCEDURE(CHAR) EXTERNAL;
DECLARE CHAR BYTE;

END CO;
DIF3:
DECLARE

DECLARE

DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE
DECLARE

PROCEDURE (SQPT) PUBLIC;
N BYTE;

PT BYTE;

MIN(3) BYTE;

NUM BYTE;

NSAM BYTE;

LP BYTE;

P BYTE;

R ADDRESS;

CHAN BYTE;

DIFF(3) ADDRESS;

ERROR (32) ADDRESS;

ERRC (32) ADDRESS;

THRES(16) ADDRESS;

TEMP ADDRESS;

ANS (32) BYTE;

SAMPPT ADDRESS;

REFPT ADDRESS;

SAMP BASED SAMPPT (128) BYTE;
REF BASED REFPT (4096) BYTE;
WEIGHT (8) BYTE;

RVAL ADDRESS;

LPVAL ADDRESS;

NUMVAL ADDRESS;

SQPT ADDRESS;

SQUARE BASED SQPT (256) ADDRESS;
VAR1 BYTE;

VAR2 BYTE;

RMAX BYTE;

SAMPPT=0COOOH;
REFPT=06800H;

/* */

THRES (0)=040;
THRES (1)=060;
THRES (2 )=080;
THRES (3)=100;
THRES (4)=120;
THRES(5)=140;
THRES (6)=160;
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THRES(7)=180;
THRES(8)=200;
THRES (9)=220;
THRES(10)=240;
THRES(11)=260;
THRES(12)=280;
THRES(13)=300;
THRES(14)=320;
THRES(15)=340;
/* */
WEIGHT(0)=2;
WEIGHT(1)=2;
WEIGHT(2)=0;
WEIGHT(3)=0;
WEIGHT(4)=1;
WEIGHT(5)=1;
WEIGHT(6)=1;
WEIGHT(7)=0;
/* */
/* */
DO R=0 TO 29;
ERROR(R)=0;
ERRC(R)=0;
RVAL=SHL(R, 8);
RMAX=1S5;
LP=0;
DO NUM=0 TO 15 BY 2;
NUMVAL=SHL(NUM, 3);
DO P=0 TO 2;
LPVAL=RVAL+SHL( (LP+P),3);
DIFF(P)=0;
DO CHAN=0 TO 7;
VAR1= REF(LPVAL+CHAN);
VAR2=SAMP ( NUMVAL+CHAN) ;
IF VAR1<VAR2 THEN TEMP=VAR2-VAR1;
ELSE TEMP=VAR1-VAR2;
DIFF(P)=DIFF(P)+SHR(SQUARE(TEMP),WEIGHT(CHAN));

END;
FINI: ; J
END; K
IF DIFF(1)<=DIFF(0) AND DIFF(1)<=DIFF(2) THEN DO; o
ERROR(R)=ERROR(R)+DIFF(1); [}
LP=LP+2; <
GOTO ST; 2

END;
IF DIFF(2)<=DIFF(0) AND DIFF(2)<=DIFF(1) THEN DO;
ERROR(R)=ERROR(R)+DIFF(2);
LP=LP+4;
GOTO ST;
END;
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ELSE DO;
ERROR(R)=ERROR(R)+DIFF(0);
LP=LP+0;

GOTO ST;

END;

/* CHECK TO SEE IF YOU HAVE REACHED THE END OF THE REFERENCE */

ST: IF NUM>=RMAX THEN GOTO TERMIN;
o /*
- | IF ERROR(R)>=THRES(NUM) THEN DO;
o CALL CO(28H);
o CALL CO(30H+R);
"] CALL CO(3AH);
S CALL CO(NUM+30H);
o CALL CO(29H);
: ERROR(R)=65530;

GOTO STP:

END;
END;
GOTO STP;
TERMIN: ERROR(R)=ERROR(R)/NUM*NSAM;
STP: ;
/* */
END;

DO N=0 TO 2;
MIN(N)=0;
DO PT=1 TO 29;
IF ERRC(PT)<ERRC(MIN(N)) THEN DO;
MIN(N)=PT;
GOTO LP;
END;
IF ERRC(PT)=ERRC(MIN(N)) THEN DO;
IF ERROR(PT)<ERROR(MIN(N)) THEN DO;

MIN(N)=PT;
END;
. END;

LP: ;

END;
¥ ERRC(MIN(N) )=ERRC(MIN(N) )+10H;
¢ END;

Ry
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-,
- IF ERROR(MIN(0))>65000 THEN DO;
b s IF ERROR(MIN(1))>65000 THEN DO;
- IF ERROR(MIN(2))>65000 THEN DO;
P CALL CO(4EH);
= CALL CO(4FH);
CALL CO(4EH);

N CALL CO(45H);
N GOTO FO;
2N END H
N END;
e END;

* &

DO N=0 TO 1;
IF MIN(O)>9 THEN MIN(O)=MIN(0)-10;
IF MIN(1)>9 THEN MIN(1)=MIN(1)-10;
IF MIN(2)>9 THEN MIN(2)=MIN(2)-10;
END;

¥
*

ikt P
gl
.'-!“’c‘n~4

IF MIN(1)=MIN(2) THEN GOTO P1;

- CALL CO(30H+MIN(0));

s GOTO FO;

- P1: CALL CO(30H+MIN(1));
FO: ;

2 CALL CO(ODH);

2 CALL CO(OAH):

2 END DIF3;

: END DIFF;

MODULE INFORMATION:

CODE AREA SIZE

VARIABLE AREA SIZE

MAXIMUM STACK SIZE

167 LINES READ

O PROGRAM ERROR(S)
. END OF PL/M-80 COMPILATION

O47EH 1150D
OOEBH 235D
0006H éD
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ISIS-I1 8080,/8085 MACRO ASSEMBLER

LINE

WONOOLDd WK

-
4
-
,
’
.
’

SAMP:
ST:

LP:

SOURCE STATEMENT

NAME SAMP

ORG

9000H

PUBLIC SAMP

IN

CPI
JC

MVI
MVI
MVI
MOV
IN

MOV
MOV
IN

MoV
MVI
MoV
IN

MOV
MoV

OCFH
20H

ST

D,0
E,80H
H, OAOH
L,D
OCs8H
M,A
L,E
OC9H
M,A
H,OAlH
L,D
OCAH
M,A
L,E
OCBH
M,A

H, OA2H
L,D
OCCH
M, A
L,E
OCDH
M.A
H,OA3H
L,D
OCEH
M,A
L,E
OCFH
M,A
B,OFFH

THIS ROUTINE INPUTS 128 SAMPLES OF EACH OF
THE 8 CHANNELS AT 10 MS INTERVALS AFTER THE
THRESHOLD IS REACHED

; COMPARE CHANNEL 8 TO THRES
;WAIT FOR THRESHOLD

; INPUT CHANNEL 1

; INPUT CHANNEL 2

; INPUT CHANNEL 3

; INPUT CHANNEL 4

; INPUT CHANNEL 5

; INPUT CHANNEL 6

; INPUT CHANNEL 7

; INPUT CHANNEL 8

; DELAY
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o 44 D1: DCR B
e 45 , JNZ D1
S 46 MVI B,OFFH ;DELAY
- 47 D2: DCR B
9 48 JINZ D2
49 MVI B,OFFH ;DELAY
50 D3: DCR B
51 JINZ D3
o 52 INR D ; INCREMENT POINTER
S 53 INR E ; INCREMENT POINTER
. 54 JINZ LP ;WAIT FOR 128 SAMPLES
55 RET
R 56 END
N PUBLIC SYMBOLS
RN SAMP A 9000
- EXTERNAL SYMBOLS
X USER SYMBOLS
\ D1 A 9035 D2 A 903B D3 A 9041
2 LP A 900B SAMP A 9000 ST A 9000
3 ASSEMBLY COMPLETE, NO ERRORS
Ry
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